A monolithic multi-time-step computational framework for first-order transient systems with disparate scales
نویسندگان
چکیده
Developing robust simulation tools for problems involving multiple mathematical scales has been a subject of great interest in computational mathematics and engineering. A desirable feature to have in a numerical formulation for multiscale transient problems is to be able to employ different time-steps (multi-time-step coupling), and different time integrators and different numerical formulations (mixed methods) in different regions of the computational domain. To this end, we present two new monolithic multi-time-step mixed coupling methods for first-order transient systems. We shall employ unsteady advection-diffusion-reaction equation with linear decay as the model problem, which offers several unique challenges in terms of non-self-adjoint spatial operator and rich features in the solutions. We shall employ the dual Schur domain decomposition technique to split the computational domain into an arbitrary number of subdomains. It will be shown that the governing equations of the decomposed problem, after spatial discretization, will be differential/algebraic equations. This is a crucial observation to obtain stable numerical results. Two different methods of enforcing compatibility along the subdomain interface will be used in the time discrete setting. A systematic theoretical analysis (which includes numerical stability, influence of perturbations, bounds on drift along the subdomain interface) will be performed. The first coupling method ensures that there is no drift along the subdomain interface, but does not facilitate explicit/implicit coupling. The second coupling method allows explicit/implicit coupling with controlled (but non-zero) drift in the solution along the subdomain interface. Several canonical problems will be solved to numerically verify the theoretical predictions, and to illustrate the overall performance of the proposed coupling methods. Finally, we shall illustrate the robustness of the proposed coupling methods using a multi-time-step transient simulation of a fast bimolecular advective-diffusive-reactive system.
منابع مشابه
A monolithic multi-time-step computational framework for advective-diffusive-reactive transient systems with disparate scales
Developing robust simulation tools for problems involving multiple mathematical scales has been a subject of great interest in computational mathematics and engineering. A desirable feature to have in a numerical formulation for multiscale transient problems is to be able to employ different time-steps (multi-time-step coupling), and different time integrators and different numerical formulatio...
متن کاملA Modified Multi Time Step Integration for Dynamic Analysis
In this paper new implicit higher order accuracy (N-IHOA) time integration based on assumption of constant time step is presented for dynamic analysis. This method belongs to the category of the multi time step integrations. Here, current displacement and velocity are assumed to be functions of the velocities and accelerations of several previous time steps, respectively. This definition causes...
متن کاملA Novel Approach to Trace Time-Domain Trajectories of Power Systems in Multiple Time Scales Based Flatness
This paper works on the concept of flatness and its practical application for the design of an optimal transient controller in a synchronous machine. The feedback linearization scheme of interest requires the generation of a flat output from which the feedback control law can easily be designed. Thus the computation of the flat output for reduced order model of the synchronous machine with simp...
متن کاملA new multi-step ABS model to solve full row rank linear systems
ABS methods are direct iterative methods for solving linear systems of equations, where the i-th iteration satisfies the first i equations. Thus, a system of m equations is solved in at most m ABS iterates. In 2004 and 2007, two-step ABS methods were introduced in at most [((m+1))/2] steps to solve full row rank linear systems of equations. These methods consuming less space, are more compress ...
متن کاملSolving systems of nonlinear equations using decomposition technique
A systematic way is presented for the construction of multi-step iterative method with frozen Jacobian. The inclusion of an auxiliary function is discussed. The presented analysis shows that how to incorporate auxiliary function in a way that we can keep the order of convergence and computational cost of Newton multi-step method. The auxiliary function provides us the way to overcome the singul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014